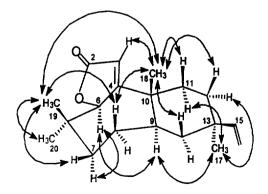
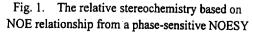


Fischeria A, a Novel Norditerpene Lactone from Euphorbia fischeriana

Yuehu Pei^{a*}, Kazuo Koike^b, Bing Han*, Zhonghua Jia^b, Tamotsu Nikaido^{b*}

*Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 110015,


Shenyang, P. R. China


^bSchool of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Chiba 274-8510, Japan Received 3 September 1998; accepted 17 November 1998

Abstract A novel norditerpene lactone possessing a new skeleton, named fischeria A, was isolated from the rhizomes of Euphorbia fischeriana Steud.. Its structure and relative configuration were determined on the basis of extensive NMR studies and X-ray crystallography. © 1999 Elsevier Science Ltd. All rights reserved.

Euphorbia fischeriana Steud. (Langdu Daji in Chinese) is a well known traditional Chinese herbal medicine and mainly used as remedy for oebema, ascites and cancer¹. Previous chemical investigation demonstrated the presence of diterpenoid constituents in Euphorbia fischeriana which had irritant, cocarcinogenic and antitumor activies.¹⁻³ We now wish to report the isolation and structural elucidation of fischeria A, a novel norditerpene lactone possessing a new carbon skeleton from E. Fischeriana.

The powdered rhizomes of *E. Fischeriana*⁴ were extracted with 95% ethanol and the extracts were concentrated. The residue was chromatographed on a silica gel column and eluted with cyclohexane/ethyl acetate (29/1) to gain fischeria A, as colorless needles, mp 120-121°C, $[\alpha]^{20}_D+51.8$ (c 2.4,CHCl₃). The molecular formula ($C_{19}H_{28}O_2$) was determined by high resolution EI-MS(m/z 288,2080 for the molecular ion). The DEPT spectrum showed 4 methyl groups, 6 methylene groups,4 methine groups and 5 quaternary carbon atoms. The ¹H-NMR spectrum displayed a vinyl group (4.89 ppm, dd, J=11.0Hz and 0.9Hz; 4.94 ppm, dd, J=17.7Hz and 0.9Hz; 5.79 ppm, dd, J=11.0Hz and 17.7Hz), olefinic methine group(5.90 ppm, d, J=1.5Hz), a proton attached to an oxygenated tertiary carbon atom(4.93, d, J=1.5Hz), and 4 quaternary methyl groups. The ¹³C-NMR spectrum indicated an α,β -unsaturated γ -lactone (183.9,117.4, 173.3,89.9ppm). The IR spectrum (KBr) exhibited absorption at 1742 cm⁻¹ further supporting the presence of the α,β -unsaturated γ -lactone. The overall structure and the relative configuration of fischeria A were established by 2D-NMR (Table1 and Fig.1) and X-ray analysis (Fig. 2).

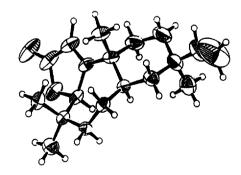


Fig. 2 The ORTEP drawing of fischeria A

Table 1. 13C, 1H-NMR and HMBC data of Fischeria A[†]

Carbon	13C(ppm)	¹H(ppm)	HMBC
2	183.9 s	-	3-H,5-H
3	117.3 d	5.90 d(1.5Hz)	_
4	173.3 s		3-H,5-H
5	89.9 d	4.93 d(1.5)	3-H,6α-CH ₃ ,6β-CH ₃
6	39.1 s	_	5-H,6α-CH ₃ ,6β-CH ₃ ,
7	43.3 t	1.63 m	6α-CH ₃ ,6β-CH ₃
8	39.3 t	1.52(β) m 1.69(α) m	14α-Η
9	39.3 d	1.65 m	10-CH ₃ ,14-H
10	39.6 s	_	5-H,10-CH ₃
11	28.5 t	$1.14(\alpha) \text{ ddd } (13.2,2.7,6.2) 1.50(\beta) \text{ m}$	10-CH ₃ ,12β-H
12	31.6 t	1.27(α) ddd (13.1,5.5,2.8) 1.60(β) m	11β-H,15-H,13-H
13	35.9 s	<u> </u>	11β-H,12β-H,15-H,13-CH ₃ ,
14	41.0 t	1.13(α) dt(13.5,2.8) 1.45(β) t(13.5)	13-CH ₃ ,12α-H,15-H
15	150.0 d	5.79 dd(17.7,11.0)	16-H,13-CH ₃
16	109.5 t	4.89 dd(11.0,0.9) 4.94 dd(17.7,0.9)	
17	22.6 q	1.03 s	14-Η,15-Η,12β-Η
18	18.8 q	1.22 s	11β-Η
19	18.9 q	0.70 s	5-H,6β-CH ₃ ,7β-H
20	30.0 q	1.21 s	5-H,6β-CH ₃

[†] Recorded in CDCl₃ on a JEOL α -500(500MHz) spectrometer. The ¹H and ¹³C assignments were based upon COSY, HOHOHA, DEPT, HETCOR, HMBC and phase-sensitive NOESY.

Acknowledgment: This research was supported in part by the Liaoning Provincial Natural Foundation of P. R. China.

References and Notes

- 1. Liu, G.F.; Yang, S.S.; Yang, Z.Q. Zhongyao Tongbao 1987, 12, 484-486.
- 2. Liu, G.F.; Yang, Z.Q. Zhongcaoyao 1989, 20, 290-292.
- 3. Liu, G.F.; Fu, Y.Q.; Yang, Z.Q. Zhongyao Tongbao 1988, 13, 291-292.
- Euphorbia fischeriana was identified by Prof. Chunquan Xu, Teaching and Research Section of Pharmacognosy, Shenyang Pharmaceutical University.
- 5. Fischeria A: C₁₉H₂₈O₂, colorless needles, mp 120-121°C [α]²⁰_D+51.8 (c 2.4,CHCl₃).HR EI-MS: m/z 288.2080 [M⁺](C₁₉H₂₈O₂,Δ-0.2 mmu of the calcd.), 273.1853 [M⁺-CH₃]. EI-MS (rel. int.): 288[M⁺](83), 273 [M⁺-CH₃](40), 245 (69), 244 (57), 95 (100). IR(KBr)ν_{max}cm⁻¹: 3457, 2925, 1742, 1611, 1457, 1383, 1327, 1180, 1004.
- 6. Crystal of 1. Crystallized from methanol, belong to an orthorhombic space group P2₁P2₁P2₁. Lattice constants and intensity data were measured on a Rigaku AFC-7R diffractometer equipped with a device for graphite-monochromated CuKα radiation. Crystal data: C₁₉H₂₈O₂, a=12.2855(7), b=22.254(1), C=6.3921(5)Å,Z=4, Dc=1.0096 g/cm³, μ(CuKα)=5.35 cm⁻¹, A total of 970 independent reflections with I>3.00σ(I) was used for structural analysis. Structure was determined by a direct method SAPI91⁷ extended using Fourier techniques and refined by full-matrix least square. Final refinement cycle gave R=0.04J (Rw=0.059). The final Fourier difference synthesis showed a maximum and minimum of +0.16 and -0.12 e/Å, respectively. Atomic coordinates, bond lengths, bond angles, thermal parameters and structure factors have been entered into the Cambridge Crystallographic Data Center.
- 7. SAPI91: Fan,H.F. (1991) Structural analysis program with intelligent control, Rigaku Corporation Tokyo, Japan